liil ByteDance | Seed

NI 11747 mierams

Seed Diffusion: A Large-Scale Diffusion Language Model

with High-Speed Inference

!ByteDance Seed

ZInstitute for Al Industry Research (AIR), Tsinghua University

3SIA-Lab of Tsinghua AIR and ByteDance Seed

Date: July 31, 2025
Correspondence: zhouhao®Qair.tsinghua.edu.cn, zhangzheng. jacob@bytedance.com
Project Page: https://seed.bytedance.com/seed_diffusion

Abstract

We present Seed Diffusion Preview, a large-scale language model based on discrete-state diffusion,
offering remarkably fast inference speed. Thanks to non-sequential, parallel generation, discrete
diffusion models provide a notable speedup to mitigate the inherent latency of token-by-token
decoding, as demonstrated recently (e.g., Mercury Coder [1], Gemini Diffusion [2]). Seed Diffusion
Preview achieves an inference speed of 2,146 token/s over H20 GPUs while maintaining competitive
performance across a sweep of standard code evaluation benchmarks, significantly faster than
contemporary Mercury and Gemini, establishing new state of the art on the speed-quality Pareto
frontier for code models. Demo is available at https://studio.seed.ai/exp/seed_diffusion/.

100%

80%

60%

Score

40%

20%

0%

B3 Seed Diffusion Preview E8 4 Gemini Diffusion

33.7 34.8
.308"

O 250 P
170
qp

LiveCodeBench*

% Mercury Coder(small) E3 % Mercury Coder(mini)

h
2146

I | 89, 690 0 I
1 0
' € 852 ' 88 84.8
794,

6771 1489
e I
5; 5 : 1109
6465
Il 737

Mbpp Human Eval

\.o\o

Bigcode Bench

Speed

hil Seed Coder Instruct

2000 token/s

1600 token/s

1200 token/s

800 token/s

400 token/s

0 token/s

Figure 1 Seed Diffusion’s inference speed is measured over H20 GPUs across eight open code benchmarks. Direct
comparison with baselines is challenging due to differing test conditions: Mercury Coder was evaluated on a proprietary
dataset with H100s, while Gemini Diffusion’s speed was averaged over a mixed-task benchmark using unknown
hardware. Furthermore, reported speeds on these benchmarks can benefit from format-constraining system prompts.
LiveCodeBench results are specifically on the 1055 problems from v1-v6 for the unknown baselines’ protocol.

https://studio.seed.ai/exp/seed_diffusion/
mailto:zhouhao@air.tsinghua.edu.cn
mailto:zhangzheng.jacob@bytedance.com
https://seed.bytedance.com/seed_diffusion

1 Introduction

Diffusion models [3-5] learn to reverse a process that incrementally corrupts data with noise, effectively
decomposing a complex distribution into a hierarchy of simplified representations. This coarse-to-fine generative
approach has proven remarkably successful across a wide range of applications, including image and video
synthesis [6] as well as solving complex challenges in natural sciences [7].

However, translating this success to the discrete domain of natural language presents critical challenges. The
primary difficulty stems from the fact that standard diffusion process is naturally defined over continuous
state spaces, thus not directly applicable to discrete domains such as natural language. To bridge this gap,
many efforts have focused on novel adaptations, ranging from projecting discrete tokens into a continuous
latent space (e.g., embeddings or a simplex) where diffusion can be applied [8-10], to constructing the
diffusion process directly over discrete-state space by defining explicit state transition matrices [11-14]. Recent
discrete-state approaches have demonstrated scalability and effectiveness with advanced architectures and
training recipes [15].

Despite impressive progress, real-world deployment of discrete diffusion models for language is still hampered
by two key challenges:

¢ Inductive bias on token—order modeling. The usage of discrete diffusion for modeling and generating
tokens in arbitrary orders is theoretically powerful and appealing [13, 14]; however, natural language
is overwhelmingly processed in a sequential order. A purely random-order learning signal can in
consequence be inefficient, or even detrimental for language modeling, dampening model performance.

e Inference inefficiency. Although diffusion models are non-autoregressive, their iterative step-sensitive
denoising procedure introduces severe latency, which undermines their major advantage over traditional
autoregressive models, acting as a cumbersome bottleneck in practice.

In this work, we introduce Seed Diffusion Preview, a code-focused language model designed to achieve an
elegant balance between speed and quality. Tackling these challenges directly, our model achieves a remarkable
speed of 2146 tokens/second on H20 GPUs while maintaining competitive performance against similarly-sized
standard language models across a diverse set of code evaluation benchmarks, establishing new state of the
art on the speed-quality Pareto frontier.

2 Related Work

Non-autoregressive (NAR) models have long been considered an alternative to sequential decoding, valued
for their potential of parallel inference. In the pre-LLM era, many early NAR methods demonstrated strong
performance on specific tasks such as machine translation [16-18|. However, these approaches often lacked
a rigorous theoretical foundation for density estimation, which limited their viability as general-purpose
probabilistic language models.

Discrete diffusion models [11, 12, 14, 19] have emerged to close this gap. By optimizing the Evidence Lower
Bound (ELBO), they provide a principled probabilistic framework for language modeling. The recent success
of large-scale systems such as Mercury Coder [1] and Gemini Diffusion [2] is particularly notable. These
models show that it is possible to narrow the quality gap with autoregressive systems while offering substantial
speedup, thereby challenging the conventional wisdom on "quality-speed trade-off", raising new interest in
NAR in the modern LLM era.

3 Seed Diffusion

As the first experimental model in our Seed Diffusion series, Seed Diffusion Preview is specifically focused on
code generation, thus adopting the data pipelines and processing methodology of the open-sourced Seed Coder
project [20]. The architecture is a standard dense Transformer, and we intentionally omit complex components
such as LongCoT reasoning in this initial version to first establish a strong and efficient performance baseline.
This section introduces its key components and training strategies.

3.1 TSC: A Two-Stage Curriculum for Robust Diffusion Training

The first stage is scaled diffusion training. Seed Diffusion Preview is a discrete-state diffusion language model
trained with two types of forward corruption process. Given an initial data sequence xy ~ pgata and continuous
timestep settings where t ~ [0, 1], the forward process implied by the marginal ¢(x;|xo) is defined as follows:

Mask-based Forward Process For the first 80% diffusion training steps, we use a standard mask-based
corruption process [12, 15]. This process gradually replaces tokens in the original sequence xo with a special
[MASK] token(m). The corrupted sequence x; is sampled from the conditional distribution ¢(x;|xo) where
each token is treated independently:

[%o0]

Gmask Xt|XO H qmask Xt |X0[]) (1)

The probability of a token remaining unchanged or being masked is determined by a noise schedule 7;. For
any position ¢, the marginal probability is:

if c = X0 [Z]

q(x[i] = efxoli]) = {1_% (2)

Ve ifc=m

vt refers to the noise schedule function designed to be monotonically increased [16, 21].

Edit-based Forward Process For the last 20% diffusion training steps, we add an extra edit-based corruption
process as augmentation to improve calibration and eliminate unexpected behavior such as repetitions in
the sampling process. Similar to mask-based approaches, we control a designed signal-to-noise ratio based
on Levenshtein distance, djc,(X,,Xp), which measures the minimum number of token-level edits required
to change one sequence into another (refer to [16] for more insights). The forward process then samples a
corrupted sequence based on a predefined edit operation set (e.g., deletions, insertions, and substitutions) and
defines the total edit-operation number as k; to approximately control langevin distance. The geqit (X¢|X0) is
implicitly defined by:

zo =Xo; 2zj=0;(zj1) forj=1,...k,o0€O; x4 =z (3)

O is a predefined operations set. Although applying k; edits does not guarantee that the final Levenshtein
distance L(xg,x;) is exactly k; (e.g., an insertion followed by a deletion can cancel out), it provides a tractable
and scalable method to control the corruption level. The target number of edits k; is scheduled as:

ki = [[xo] - (au)] (4)

Here a; denotes the scheduler for the approximate signal-to-noise ratio. As an auxiliary objective, we make
ay lie in the range [0, 0.1] to maintain the density estimation ability of mask-based forward process.

Overall Learning Objective The reverse process is parameterized as pg(x;|x;). We set the predicted probability
over the mask token always as 0 [12] by adding — inf to the corresponding logits. With this formulation, the
mask-based forward process implies an analytical posterior, hence a tractable and simple formulation ELBO:

r |xo]
LrLeo = —logpe (X0 | X0) —Egpuat %Z 1 [x¢[t] = m]log pg (xoli] | x:[d]) (5)
N———— t i

Recontruct Loss

Our learning objective derives from ELBO in Eq. 6 by substituting the reconstruct loss with a denoised loss
based on the edit-based forward process geqis as:

r Ixo]

Laigr(0) = —Eg.u ¢ log po(xo[xt) = Egpurt Z 1 [x;[i] = m]log pg (xoli] | x:[i]) (6)

Remark 3.1 Unlike some prior work [12, 13], we do not employ the strategy of "Carry Over Unmasking”, i.e.
directly copying unmasked input tokens to the output, despite potential benefits to perplexity. While a purely
mask-based diffusion process offers a low-variance training objective (each position is either the ground truth or
a [MASK] token), it introduces a detrimental inductive bias. Such a model learns a spurious correlation that
unmasked tokens are always correct, leading to overconfidence and unable to perform self-correction during
inference. To mitigate this, our edit-based augmentation forces the model to re-evaluate all tokens, including
those unmasked.

3.2 Tailoring the Trajectory Space of Diffusion

An important perspective to understand the essentials of mask-based diffusion models is its equivalence to
any-order autoregressive modeling, which has been independently revealed and illustrated by [13, 14, 22]. This
perspective builds the correlation between ELBO and an expected log-likelihood of any-order autoregressive
models as:

d=|x]|
TO0) = ~Erev(sy | Y 108D6(Xn(r) | Xn(<r) (7)
r=1
Here Sy stands for the symmetric group of all possible permutations 7 over {0,1,...,d—1}. po(Xr(ry | Xn(<r))

models the conditional probability of x(,) given all preceding tokens in the permutations 7 denoted as X (<)
Now recall that with the transition probability gmask(X:|Xs),t > s denotes as:

=2 i xfi] = x,[i] # m
Qmask(xt [Z] | Xs ['L]) - %,7: if Xt [l] = m and X [Z] 7é m (8)
1 if x¢[i] = x4[i] = m

Intuitively, we interpret any trajectory 7 with K elements 7 = {xg — -+ = x; = Xi } (Xx are all mask tokens)
obtained based on the above transition conditional probability as an order of autoregressive decomposition.

Mask-based diffusion training presents a more complex learning problem than standard left-to-right autoregres-
sive (AR) training. By design, diffusion models must learn from all possible generation orders, including many
that are redundant, detrimental, or misaligned with the natural structure of language [23]. Consequently,
diffusion-trained language models lag significantly behind their AR counterparts, even on code data that lacks
a strong left-to-right prior. This persistent gap presents a fundamental challenge for the diffusion approach.

We propose a constrained-order diffusion training process after the two-stage diffusion learning. This procedure
involves creating a distilled dataset of optimal generation trajectories. Specifically, for any given sample, a
candidate pool of trajectories is generated at scale using the pre-trained diffusion model. A selection criterion
based on maximizing the Evidence Lower Bound (ELBO) is applied to filter this pool, and the resulting
high-quality trajectories are used to fine-tune the model. With the high-quality synthesized trajectories as T,
the constrained-order training takes the form of the following:

Le(0) = Erv (1), (xi.x0)er — A(Xi) log po(xo|f(xi)) (9)

A(x;) is the weight for balancing loss toward different noise levels, and f is an augmentation function similar
tO eqit in Section. 3.1.

3.3 On-policy Diffusion Learning

Although in theory discrete diffusion models should offer the advantage of parallel decoding, in practice
realizing this potential is challenging. A single parallel inference step is computationally expensive, meaning a
large number of tokens must be generated simultaneously to amortize this overhead in order to achieve actual
inference efficiency gains. Reducing the total number of generation steps for better efficiency, however, can
result in severe degradation in performance, especially in mask-based approaches [15].

To fully unlock the parallel power, we propose a simple yet effective on-policy learning paradigm: for the
reverse process parameterized with 6, we optimize the objective as:

E prompt~pdata [|7'| — V(T[O])] (10)

Tr~pg (-|prompt)

Here 7 = {7[K], -+ ,7[i],--- ,7[0]} is the sampled trajectory of the reverse process with a strategic sampling
strategy, and the model 6 is conditioned on the given prompts. The trajectory starts from the sequence with
all mask tokens, and the final generated samples are 7[0]. |7| denotes the sample steps and V'(-) represents
a model-based verifier that ensures the sampling process always converges to a reasonable/correct sample.
The verifier-related term (V(7]0])) in Equation. 10 can be optimized with the log-derivative trick [24]. We
observed that directly minimizing trajectory length led to unstable training dynamics. Therefore, we optimize
a progressive surrogate loss based on the fact that

1

) G T)

7] o Ei,je{o,u

The speed-up dynamics during on-policy training is illustrated in Figure 2a. Interestingly, this procedure has
an effect analogous to mode filtering, a technique previously explored in the non-autoregressive (NAT) text
generation literature [16, 25].

2.00
+423%
+400% o
+400% — 1.80
5 1
+34V g
. 2
308% el
0 g 5
2 +300% © + 1.60
g +253°// g
Y o (7]
E] +20V £
8 +200% ’ 5 140
a ()
» >
©
g
+100% 1.20
+0% o 1.00
0 5000 10000 15000 20000 25000 30000 35000 0 16 32 48 64 80 96 112 128

Training Step Block Size

(a) The changes of speedup ratio estimated by sampling (b) The relative forward time(%) changes over the
with a certain block size b during the on-policy training. different block size(b)

Figure 2 On-policy Training Dynamics & Block-wise Inference Time

3.4 Inference and Infrastructure

To balance computation and latency, we employ a block-level parallel diffusion sampling scheme that maintains
a causal ordering between blocks. For generating tokens in the n-th block (B,,), the reverse process is expressed
as po(x¢|x,, xBo»Bn). Here xBo--Bn denotes the previously generated block of tokens with x0 = (). This
semi-autoregressive (semi-AR) process is a well-established technique for balancing generation quality and
efficiency [15]. We avoid block-specific training[26] to retain flexibility for arbitrary block partitioning during
inference. We use KV-caching for previously generated blocks to condition subsequent ones. Although this
risks potentially introducing potential bias, we empirically observe no significant degradation in generation
quality. This robustness is probably due to the distillation of constrained-order trajectories as introduced in
Section 3.2.

Table 1 Performance on Aider ("whole" format) and CanItEdit.

Model Size Aider CanltEdit
tries=2 pass@1
<15B Models
CodeLlama-7B-Instruct 7B 1.5 25.7
DeepSeek-Coder-6.7B-Instruct 6.7B 44.4 36.9
CodeQwenl.5-7B-Chat 7B 38.3 34.8
Yi-Coder-9B-Chat 9B 54.1 50.5
Qwen2.5-Coder-14B-Instruct 14B 69.2 52.9
StarCoder2-15B-Instruct 15B 38.2 31.4
Llama-3.1-8B-Instruct 8B 33.1 39.5
OpenCoder-8B-Instruct 8B 30.8 39.0
Qwen2.5-Coder-7B-Instruct 7B 57.9 49.5
Qwen3-8B 8B 55.6 45.7
Seed-Coder-8B-Instruct 8B 57.1 50.5
Seed-Diffusion-Preview(0705) - 44 .4 54.3
15B+ Models
Codestral-22B 22B 51.1 52.4
CodeLlama-70B-Instruct 70B 15.0 40.5
DeepSeek-Coder-33B-Instruct 33B 54.5 46.2
DeepSeek-Coder-V2-Lite-Instruct 2.4B/16B 52.6 45.2

Beyond algorithmic design, our work employs holistic system optimization to support block-level inference
efficiently. Specifically, we leverage our internal infrastructure framework, featuring specialized optimizations
for diffusion sampling, to accelerate generation. The impact on performance across different block sizes is
detailed in Figure 2b. This analysis informs our selection of the optimal block size, determined by the trade-off
between the latency of a single forward pass and the corresponding token generation rate.

4 Experiments

We benchmark the performance and decoding speed of Seed Diffusion across a range of code-related tasks. Our
evaluation protocols and primary baselines are adapted from [20]. To provide a comprehensive comparison, we
also include state-of-the-art Diffusion Language Models for experiments: Mercury [1] and Gemini-Diffusion [2].

4.1 Benchmarks

To provide a rigorous assessment of Seed Diffusion Preview, we evaluate its performance across a diverse suite
of code generation benchmarks:

HumanEval and MBPP We present HumanEval and MBPP results for the evaluation of basic coding ability.

BigCodeBench BigCodeBench [27] is a recent benchmark that assesses LLMs on real-world programming
tasks involving multi-tool use. It features 1,140 Python tasks from 7 domains, requiring models to utilize 139
different libraries. The benchmark emphasizes compositional reasoning and is evaluated with notable rigor,
using an average of 5.6 test cases and 99% branch coverage per task.

LiveCodeBench For Competitive Coding tasks, we utilize LiveCodeBench [28], which continuously curates new
problems from prominent competitive programming platforms including LeetCode, AtCoder and CodeForces.
Crucially, it also time-stamps each problem with its release date. This temporal tagging enables the creation
of contamination-free evaluation slices, ensuring models are assessed only on problems published after
their training data cutoff. We provide the evaluation of all stage "v1-v6" and the most recent stage "v6"
(250201-250501).

Table 2 Performance on MBXP.

Model Size Python Java C++ C# TS JS PHP Go Kotlin Perl Ruby Scala Swift Average
<15B Models
CodeLlama-7B-Instruct 7B 54.0 38.8 329 500 423 455 36.6 488 472 50.1 369 402 332 42.8
DeepSeek-Coder-6.7B-Instruct 6.7B 74.9 522 309 559 648 64.7 258 93.8 59.6 3.3 659 548 474 53.4
CodeQwenl.5-7B-Chat 7B s 66.6 66.8 644 66.7 67.5 673 55.1 609 61.1 659 60.0 54.7 64.2
Yi-Coder-9B-Chat 9B 82.0 734 791 703 741 733 764 909 644 609 673 635 573 71.8
Qwen2.5-Coder-14B-Instruct 14B 86.2 775 848 801 776 777 797 971 75.3 762 793 731 67.2 794
StarCoder2-15B-Instruct 15B 78.0 251 259 21.7 20.7 59.8 53.5 904 46.7 319 56.1 432 420 45.8
Llama-3.1-8B-Instruct 8B 70.1 59.8 59.1 56.6 59.1 59.1 62.5 85.7 522 42,6 559 445 318 56.8
OpenCoder-8B-Instruct 8B 79.1 68.1 713 710 676 614 681 944 664 56.1 70.5 63.1 56.7 68.8
Qwen2.5-Coder-7B-Instruct 7B 83.5 70.5 741 715 722 741 742 96.0 655 644 755 642 62.0 72.9
Qwen3-8B 8B 77.0 69.0 728 689 73.0 73.8 723 929 620 646 69.0 63.1 42.2 69.3
Seed-Coder-8B-Instruct 8B 85.2 727 770 742 728 788 747 955 734 725 780 703 542 75.3
Seed-Diffusion-Preview(0705) - 79.4 67.7 726 703 73.0 76.6 747 929 712 71.2 725 67.0 542 72.6
15B+ Models
Codestral-22B 22B 78.2 73.6 773 701 717 685 749 971 710 66.6 742 644 50.1 72.1
CodeLlama-70B-Instruct 70B 77.8 66.6 68.6 69.2 478 625 70.5 77.7 572 51.1 67.0 51.3 487 62.8
DeepSeek-Coder-33B-Instruct 33B 80.4 71.8 768 699 724 69.8 751 964 701 66.6 75.1 64.6 54.3 72.6
DeepSeek-Coder-V2-Lite-Instruct 2.4B/16B 82.8 73.3 753 724 724 731 751 951 69.9 61.6 745 63.5 55.0 72.6
DeepSeek-Coder-V2-Instruct 21B/236B 89.4 782 776 726 748 805 758 89.1 745 70.7 80.2 67.9 59.0 76.2
Qwen2.5-Coder-32B-Instruct 32B 90.2 804 863 735 783 793 876 964 756 747 834 63.3 66.7 79.7

MBXP The MBXP benchmark [29] was designed for multilingual code evaluation. It adapts the problems and
unit tests from the original, Python-centric MBPP benchmark for usage across more than ten programming
languages.

Table 3 Performance on NaturalCodeBench.

Model Size NCB (zh) NCB (en) Total

Python Java Total Python Java Total

<15B Models
CodeLlama-7B-Instruct 7B 18.6 8.6 13.6 17.1 14.3 15.7 14.6
DeepSeek-Coder-6.7B-Instruct 6.7B 38.6 314 35.0 32.9 329 329 339
Yi-Coder-9B-Chat 9B 41.4 45.7 43.6 38.6 44.3 41.5 42.5
Qwen2.5-Coder-14B-Instruct 14B 48.6 48,6 48.6 42.9 45.7 443 46.4
StarCoder2-15B-Instruct 15B 44.3 30.0 37.2 38.6 429 408 39.0
Llama-3.1-8B-Instruct 8B 27.1 24.3 25.7 22.9 22.9 229 243
OpenCoder-8B-Instruct 8B 40.0 30.0 35.0 35.7 243 300 325
Qwen2.5-Coder-7B-Instruct 7B 34.3 37.1 35.7 34.3 35.7 35.0 354
Qwen3-8B 8B 37.1 32.9 35.0 34.3 38.6 36.5 35.7
Seed-Coder-8B-Instruct 8B 55.7 45.7 507 50.0 471 486 49.6
Seed-Diffusion-Preview(0705) - 52.9 38.6 45.8 45.7 38.6 386 422

15B Models
Codestral-22B 22B 40.0 44.3 42.2 41.4 457 43.6 429
CodeLlama-70B-Instruct 70B 35.1 32.1 33.6 32.8 305 317 326
DeepSeek-Coder-33B-Instruct 33B 443 389 416 443 44.3 443 43.0

DeepSeek-Coder-V2-Lite-Instruct 2.4B/16B 41.4 471 443 41.4 371 393 418

NaturalCodeBench NaturalCodeBench (NCB) [30] was developed to provide a more realistic evaluation
environment through a curated set of 402 problems in Python and Java, derived from genuine user queries.
Its problems span across six key domains and employ complex test inputs, including varied file types and
data structures.

Aider and CanltEdit To assess code-editing capabilities, we use the Aider and CanltEdit benchmark. Aider !

Thttps://aider.chat/docs /leaderboards /edit.html

features 133 coding exercises from Exercism, where a model must edit existing code. The primary challenge is
that the model’s modifications must be formatted for automated application without any human intervention.
Meanwhile, the CanltEdit benchmark [31] provides a rigorous evaluation of a model’s instructional code-
editing capabilities. It comprises 105 hand-crafted problems with a mix of "descriptive" (explicit) and "lazy"
(ambiguous) instructions.

4.2 Performance

Seed-Diffusion-Preview has demonstrated huge potential of diffusion for code generation. As shown in Tables 1,
2, 3 and Fig. 1, our model not only achieves performance comparable to advanced autoregressive models while
operating at significantly higher speeds, but also delivers a notable boost on editing tasks. These results mark
discrete diffusion as a promising direction for future exploration.

5 Discussion

This work presents the key technical components of an experimental model from our Seed Diffusion project,
demonstrating its potential for significant inference acceleration in large-scale language models. We posit
that faster inference is merely the most immediate benefit of discrete diffusion. Exploring alternatives to the
conventional left-to-right modeling order represents a valuable research direction, as it involves moving away
from a pervasive, human-centric assumption in machine learning. Unlocking the full capabilities of discrete
diffusion will require significant efforts from the community, particularly in exploring its scaling properties
and its applications to complex reasoning tasks.

Contributions

Project Lead

Yuxuan Song?3, Zheng Zhang!3
(Alphabetical Order)

Core Contributor

Yuxuan Song?3, Zheng Zhang!:3, Cheng Luo!
Contributor

Pengyang Gao!, Fan Xia', Hao Luo', Zheng Li', Yuehang Yang', Hongli Yu?3, Xingwei Qu', Yuwei Fu',
Jing Su', Ge Zhang', Wenhao Huang'

Supervision

Mingxuan Wang'3, Lin Yan', Xiaoying Jia!, Jingjing Liu??3, Wei-Ying Ma?3, Ya-Qin Zhang??, Yonghui
Wul!, Hao Zhou?3

Affiliation

!ByteDance Seed

2Institute for AI Industry Research (AIR), Tsinghua University
3SIA-Lab of Tsinghua AIR and ByteDance Seed

Acknowledgments

We thank the Seed-Coder team for their help with the data pipelines and our many colleagues at ByteDance
for their support of the Seed Diffusion project.

References

(1

2]

3l

(4]

[5

(6]

7l

(8]

9l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum, Ziyang Luo,
Yanis Miraoui, Akash Palrecha, Stefano Ermon, et al. Mercury: Ultra-fast language models based on diffusion.
arXiv e-prints, pages arXiv-2506, 2025.

Google DeepMind. https://blog.google/technology/google-deepmind /gemini-diffusion/. https://blog.google/
technology/google-deepmind/gemini-diffusion/, 2025. Accessed: 2024-07-24.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In Advances
in Neural Information Processing Systems, pages 11918-11930, 2019.

Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. arXiv preprint arXiv:1503.03585, 2015.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video
diffusion models. Advances in neural information processing systems, 35:8633-8646, 2022.

Mihaly Varadi, Damian Bertoni, Paulyna Magana, Urmila Paramval, [vanna Pidruchna, Malarvizhi Radhakrishnan,
Maxim Tsenkov, Sreenath Nair, Milot Mirdita, Jingi Yeo, et al. Alphafold protein structure database in 2024:
providing structure coverage for over 214 million protein sequences. Nucleic acids research, 52(D1):D368-D375,
2024.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow networks. arXiv
preprint arXiv:2308.07037, 2023.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H Richemond,
Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Advances in Neural
Information Processing Systems, 36, 2024.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising
diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems, 34:17981-17993,
2021.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. arXiv preprint
arXiv:2406.07524, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and generalized masked
diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your absorbing
discrete diffusion secretly models the conditional distributions of clean data. arXiv preprint arXiv:2406.03736,
2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and
Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992, 2025.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li. Glancing
transformer for non-autoregressive neural machine translation. In the 59th Annual Meeting of the Association
for Computational Linguistics (ACL), July 2021.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie Huang. Directed acyclic transformer for non-autoregressive
machine translation. In International Conference on Machine Learning, pages 9410-9428. PMLR, 2022.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel decoding of
conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating the ratios of
the data distribution. 2023.

10

https://blog.google/technology/google-deepmind/gemini-diffusion/
https://blog.google/technology/google-deepmind/gemini-diffusion/

20]

21]

[22]

23]

[24]

[25]

[26]

27]

(28]

[29]

[30]

31]

Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang Zhang, Kaibo Liu, Daoguang
Zan, Tao Sun, et al. Seed-coder: Let the code model curate data for itself. arXiv preprint arXiv:2506.03524, 2025.

Lihua Qian, Mingxuan Wang, Yang Liu, and Hao Zhou. Diffusion glancing transformer for parallel sequence-to-
sequence learning. In Kevin Duh, Helena Gomez, and Steven Bethard, editors, Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4846-4862, Mexico City, Mexico, June 2024. Association for Computational
Linguistics.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the worst, plan for the best:
Understanding token ordering in masked diffusions. arXiv preprint arXiv:2502.06768, 2025.

Ning Miao, Yuxuan Song, Hao Zhou, and Lei Li. Do you have the right scissors? tailoring pre-trained language
models via Monte-Carlo methods. In the 58th Annual Meeting of the Association for Computational Linguistics
(ACL) - short papers, July 2020.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient estimation in
machine learning. Journal of Machine Learning Research, 21(132):1-62, 2020.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive neural
machine translation. In ICLR, 2018.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar Sahoo,
and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive and diffusion language models.
arXiv preprint arXiv:2503.09573, 2025.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code generation with diverse
function calls and complex instructions. arXiv preprint arXiv:2406.15877, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models
for code. arXiv preprint arXiv:2403.07974, 2024.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of code generation models. arXiv
preprint arXiv:2210.14868, 2022.

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao Dong, and
Jie Tang. Naturalcodebench: Examining coding performance mismatch on humaneval and natural user prompts.
arXiv preprint arXiv:2405.04520, 2024.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward Berman,
George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, et al. Can it edit? evaluating the ability of large
language models to follow code editing instructions. arXiv preprint arXiv:2312.12450, 2023.

11

	Introduction
	Related Work
	Seed Diffusion
	TSC: A Two-Stage Curriculum for Robust Diffusion Training
	Tailoring the Trajectory Space of Diffusion
	On-policy Diffusion Learning
	Inference and Infrastructure

	Experiments
	Benchmarks
	Performance

	Discussion

